Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.186
Filtrar
1.
Sci Total Environ ; 926: 172087, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38561129

RESUMO

The main components of particulate matter (PM) had been reported to change DNA methylation levels. However, the mixed effect of PM and its constituents on DNA methylation and the underlying mechanism in children has not been well characterized. To investigate the association between single or mixture exposures and global DNA methylation or DNA methyltransferases (DNMTs), 273 children were recruited (110 in low-exposed area and 163 in high-exposed area) in China. Serum benzo[a]pyridin-7,8-dihydroglycol-9, 10-epoxide (BPDE)-albumin adduct and urinary metals were determined as exposure markers. The global DNA methylation (% 5mC) and the mRNA expression of DNMT1, and DNMT3A were measured. The linear regression, quantile-based g-computation (QGC), and mediation analyses were performed to investigate the effects of individual and mixture exposure. We found that significantly lower levels of % 5mC (P < 0.001) and the mRNA expression of DNMT3A in high-PM exposed group (P = 0.031). After adjustment for age, gender, BMI z-score, detecting status of urinary cotinine, serum folate, and white blood cells, urinary arsenic (As) was negatively correlated with the % 5mC. One IQR increase in urinary As (19.97 µmol/mol creatinine) was associated with a 11.06 % decrease in % 5mC (P = 0.026). Serum BPDE-albumin adduct and urinary cadmium (Cd) were negatively correlated with the levels of DNMT1 and DNMT3A (P < 0.05). Mixture exposure was negatively associated with expression of DNMT3A in QGC analysis (ß: -0.19, P < 0.001). Mixture exposure was significantly associated with decreased % 5mC in the children with non-detected cotinine or normal serum folate (P < 0.05), which the most contributors were PAHs and As. The mediated effect of hypomethylation through DNMT1 or DNMT3A pathway was not observed. Our findings indicated that individual and mixture exposure PAHs and metal components had negative associations with global DNA methylation and decreased DNMT3A expression significantly in school-age individuals.


Assuntos
Metilação de DNA , Hidrocarbonetos Policíclicos Aromáticos , Criança , Humanos , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido , Cotinina , Material Particulado , Poeira , DNA , Albuminas/metabolismo , Estudantes , Ácido Fólico , RNA Mensageiro/metabolismo
2.
Sci Total Environ ; 923: 171349, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38438030

RESUMO

Benzo(a)pyrene as a pervasive environmental contaminant is characterized by its substantial genotoxicity, and epidemiological investigations have established a correlation between benzo(a)pyrene exposure and the susceptibility to human lung cancer. Notably, much research has focused on the link between epigenetic alterations and lung cancer induced by chemicals, although circRNAs are also emerging as relevant contributors to the carcinogenic process of benzo(a)pyrene. In this study, we identified circ_0067716 as being significantly upregulated in response to stress injury and downregulated during malignant transformation induced by benzo(a)pyrene-7,8-diol-9,10-epoxide (BPDE) in human bronchial epithelial cells. The observed differential expression of circ_0067716 in cells treated with BPDE for varying durations suggests a strong correlation between this circRNA and BPDE exposure. The tissue samples of lung cancer patients also suggest that a lower circ_0067716 expression is associated with BPDE-DNA adduct levels. Remarkably, we demonstrate that EIF4A3, located in the nucleus, interacts with the flanking sequences of circ_0067716 and inhibits its biogenesis. Conversely, circ_0067716 is capable of sequestering EIF4A3 in the cytoplasm, thereby preventing its translocation into the nucleus. EIF4A3 and circ_0067716 can form a double-negative feedback loop that could be affected by BPDE. During the initial phase of BPDE exposure, the expression of circ_0067716 was increased in response to stress injury, resulting in cell apoptosis through the involvement of miR-324-5p/DRAM1/BAX axis. Subsequently, as cellular adaptation progressed, long-term induction due to BPDE exposure led to an elevated EIF4A3 and a reduced circ_0067716 expression, which facilitated the proliferation of cells by stabilizing the PI3K/AKT pathway. Thus, our current study describes the effects of circ_0067716 on the genotoxicity and carcinogenesis induced by benzo(a)pyrene and puts forwards to the possible regulatory mechanism on the occurrence of smoking-related lung cancer, providing a unique insight based on epigenetics.


Assuntos
Neoplasias Pulmonares , MicroRNAs , Humanos , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/metabolismo , Benzo(a)pireno/metabolismo , Transformação Celular Neoplásica/induzido quimicamente , Transformação Celular Neoplásica/metabolismo , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/farmacologia , Células Epiteliais , Fator de Iniciação 4A em Eucariotos/metabolismo , Fator de Iniciação 4A em Eucariotos/farmacologia , Retroalimentação , Neoplasias Pulmonares/patologia , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo
3.
Sci Total Environ ; 926: 171841, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38513863

RESUMO

OBJECTIVE: To investigate the link between systemic lupus erythematosus (SLE) incidence and exposure to environmental polycyclic aromatic hydrocarbons (PAH). METHODS: A case-control study (ChiCTR2000038187) involving 316 SLE patients and 851 healthy controls (HCs) was executed. Environmental exposure was assessed via a questionnaire, stratified by gender and age (females <35 and ≥35 years, males). Blood samples collected from 89 HCs, 85 inactive, and 95 active SLE patients were used to measure serum benzo[a]pyrene diol epoxide -albumin (BPDE-Alb) adducts and PAH concentrations, indicating long-term and short-term exposure respectively. Intergroup comparisons and statistical analyses were conducted using R version 4.3.1. RESULTS: Diverse patterns were found in how environmental factors affect SLE onset across different demographics. Lifestyle exposure factors were found to be a stronger determinant of SLE onset than occupational exposure factors in women under 35. Indoor air pollution had a significant impact on SLE incidence, potentially comparable to outdoor air pollution. Lifestyle-related PAH exposure had a greater impact on SLE than occupational PAH exposure. PAH exposure levels progressively increase from HCs to inactive and active SLE patients. Active SLE patients show markedly higher BPDE-Alb levels than HCs. CONCLUSIONS: Environmental PAH, particularly lifestyle-related, are significant, yet under-recognized, risk factors for SLE. STATEMENT OF ENVIRONMENTAL IMPLICATION: We examined the relationship between exposure to environmental polycyclic aromatic hydrocarbons (PAH) and the incidence of systemic lupus erythematosus (SLE). PAH, prevalent in sources such as cigarette smoke, air pollution, and charred food, pose significant health hazards. This study is the first to investigate specific PAH exposure levels in SLE patients. We determined actual PAH exposure levels in both SLE patients and healthy individuals and indicated that long-term PAH exposure biomarker is more reliable for evaluating exposure in non-occupationally exposed groups like SLE, compared to short-term markers. These findings provide valuable insights for future research on similar non-occupationally exposed populations.


Assuntos
Lúpus Eritematoso Sistêmico , Hidrocarbonetos Policíclicos Aromáticos , Masculino , Humanos , Feminino , Adulto , Hidrocarbonetos Policíclicos Aromáticos/análise , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/análise , Estudos de Casos e Controles , Exposição Ambiental/análise , Fatores de Risco , Albumina Sérica , Lúpus Eritematoso Sistêmico/epidemiologia
4.
Toxicol Appl Pharmacol ; 485: 116916, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38537874

RESUMO

This study aims to explore the impact and underlying mechanism of sulforaphane (SFN) intervention on the migration and invasion of lung adenocarcinoma induced by 7, 8-dihydroxy-9, 10-epoxy-benzo (a) pyrene (BPDE). Human lung adenocarcinoma A549 cells were exposed to varying concentrations of BPDE (0.25, 0.50, and 1.00 µM) and subsequently treated with 5 µM SFN. Cell viability was determined using CCK8 assay, while migration and invasion were assessed using Transwell assays. Lentivirus transfection was employed to establish NLRP12 overexpressing A549 cells. ELISA was utilized to quantify IL-33, CXCL12, and CXCL13 levels in the supernatant, while quantitative real-time PCR (qRT-PCR) and Western Blot were used to analyze the expression of NLRP12 and key factors associated with canonical and non-canonical NF-κB pathways. Results indicated an increase in migratory and invasive capabilities, concurrent with heightened expression of IL-33, CXCL12, CXCL13, and factors associated with both canonical and non-canonical NF-κB pathways. Moreover, mRNA and protein levels of NLRP12 were decreased in BPDE-stimulated A549 cells. Subsequent SFN intervention attenuated BPDE-induced migration and invasion of A549 cells. Lentivirus-mediated NLRP12 overexpression not only reversed the observed phenotype in BPDE-induced cells but also led to a reduction in the expression of critical factors associated with both canonical and non-canonical NF-κB pathways. Collectively, we found that SFN could inhibit BPDE-induced migration and invasion of A549 cells by upregulating NLRP12, thereby influencing both canonical and non-canonical NF-κB pathways.


Assuntos
Adenocarcinoma de Pulmão , Movimento Celular , Isotiocianatos , Neoplasias Pulmonares , Invasividade Neoplásica , Sulfóxidos , Humanos , Isotiocianatos/farmacologia , Sulfóxidos/farmacologia , Movimento Celular/efeitos dos fármacos , Células A549 , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/toxicidade , Anticarcinógenos/farmacologia , NF-kappa B/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
5.
Toxicol Sci ; 198(2): 221-232, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38310363

RESUMO

Increasing environmental genotoxic chemicals have been shown to induce epigenetic alterations. However, the interaction between genetics and epigenetics in chemical carcinogenesis is still not fully understood. Here, we constructed an in vitro human lung carcinogenesis model (16HBE-T) by treating human bronchial epithelial cells with a typical significant carcinogen benzo(a)pyrene (BaP). We identified a novel circular RNA, circ0087385, which was overexpressed in 16HBE-T and human lung cancer cell lines, as well as in lung cancer tissues and serum exosomes from lung cancer patients. The upregulated circ0087385 after exposure to BaP promoted DNA damage in the early stage of chemical carcinogenesis and affected the cell cycle, proliferation, and apoptosis of the malignantly transformed cells. Overexpression of circ0087385 enhanced the expression of cytochrome P450 1A1 (CYP1A1), which is crucial for metabolically activating BaP. Interfering with circ0087385 or CYP1A1 reduced the levels of ultimate carcinogen benzo(a)pyrene diol epoxide (BPDE) and BPDE-DNA adducts. Interfering with CYP1A1 partially reversed the DNA damage induced by high expression of circ0087385, as well as decreased the level of BPDE and BPDE-DNA adducts. These findings provide novel insights into the interaction between epigenetics and genetics in chemical carcinogenesis which are crucial for understanding the epigenetic and genetic toxicity of chemicals.


Assuntos
Citocromo P-450 CYP1A1 , Neoplasias Pulmonares , Humanos , Citocromo P-450 CYP1A1/metabolismo , Adutos de DNA , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/toxicidade , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Benzo(a)pireno/toxicidade , Dano ao DNA , Carcinógenos/toxicidade , Carcinogênese/induzido quimicamente , Carcinogênese/genética
6.
Ecotoxicol Environ Saf ; 271: 115980, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38262095

RESUMO

Epidemiologic studies have reported the positive relationship of benzo[a]pyrene (BaP) exposure with the risk of lung cancer. However, the mechanisms underlying the relationship is still unclear. Plasma microRNA (miRNA) is a typical epigenetic biomarker that was linked to environment exposure and lung cancer development. We aimed to reveal the mediation effect of plasma miRNAs on BaP-related lung cancer. We designed a lung cancer case-control study including 136 lung cancer patients and 136 controls, and measured the adducts of benzo[a]pyrene diol epoxide-albumin (BPDE-Alb) and sequenced miRNA profiles in plasma. The relationships between BPDE-Alb adducts, normalized miRNA levels and the risk of lung cancer were assessed by linear regression models. The mediation effects of miRNAs on BaP-related lung cancer were investigated. A total of 190 plasma miRNAs were significantly related to lung cancer status at Bonferroni adjusted P < 0.05, among which 57 miRNAs showed different levels with |fold change| > 2 between plasma samples before and after tumor resection surgery at Bonferroni adjusted P < 0.05. Especially, among the 57 lung cancer-associated miRNAs, BPDE-Alb adducts were significantly related to miR-17-3p, miR-20a-3p, miR-135a-5p, miR-374a-5p, miR-374b-5p, miR-423-5p and miR-664a-5p, which could in turn mediate a separate 42.2%, 33.0%, 57.5%, 36.4%, 48.8%, 32.5% and 38.2% of the relationship of BPDE-Alb adducts with the risk of lung cancer. Our results provide non-invasion biomarker candidates for lung cancer, and highlight miRNAs dysregulation as a potential intermediate mechanism by which BaP exposure lead to lung tumorigenesis.


Assuntos
Neoplasias Pulmonares , MicroRNAs , Humanos , MicroRNAs/genética , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/genética , Benzo(a)pireno/toxicidade , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/toxicidade , Estudos de Casos e Controles , Pulmão , Biomarcadores , China
7.
Fish Shellfish Immunol ; 144: 109278, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072136

RESUMO

Benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE) is the active intermediate metabolite of benzo[a]pyrene (B[a]P) and is considered the ultimate immunotoxicant. The neuroendocrine immunoregulatory network of bivalves is affected under pollutant stress. Besides, bivalves are frequently affected by pollutants in marine environments, yet the combined effects of neuroendocrine factors and detoxification metabolites on bivalves under pollutant stress and the signal pathways that mediate this immunoregulation are not well understood. Therefore, we incubated the hemocytes of Chlamys farreri with the neuroendocrine factor noradrenaline (NA) and the B[a]P detoxification metabolite BPDE, alone or in combination, to examine the immunotoxic effects of NA and BPDE on the hemocytes in C. farreri. Furthermore, the effects of NA and BPDE on the hemocyte signal transduction pathway were investigated by assessing potential downstream targets. The results revealed that NA and BPDE, alone or in combination, resulted in a significant decrease in phagocytic activity, bacteriolytic activity and the total hemocyte count. In addition, the immunotoxicity induced by BPDE was further exacerbated by co-treatment with NA, and the two showed synergistic effects. Analysis of signaling pathway factors showed that NA activated G proteins by binding to α-AR, which transmitted information to the Ca2+-NF-κB signaling pathway to regulate the expression of phagocytosis-associated proteins and regulated cytokinesis through the cAMP signaling pathway. BPDE could activate PTK and affect phagocytosis and cytotoxicity proteins through Ca2+-NF-κB signal pathway, also affect the regulation of phagocytosis and cytotoxicity by inhibiting the AC-cAMP-PKA pathway to down-regulate the expression of NF-κB and CREB. In addition, BPDE and NA may affect the immunity of hemocytes by down-regulating phagocytosis-related proteins through inhibition of the lectin pathway, while regulating the expression of cytotoxicity-related proteins through the C-type lectin. In summary, immune parameters were suppressed through Ca2+ and cAMP dependent pathways exposed to BPDE and the immunosuppressive effects were enhanced by the neuroendocrine factor NA.


Assuntos
Poluentes Ambientais , Pectinidae , Animais , Benzo(a)pireno , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/metabolismo , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/farmacologia , Hemócitos/metabolismo , NF-kappa B , Norepinefrina , Pectinidae/metabolismo
8.
Environ Int ; 180: 108237, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37802009

RESUMO

Environmental benzo(a)pyrene (BaP) and its ultimate metabolite BPDE (benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide) are universal and inevitable persistent organic pollutants and endocrine disrupting chemicals. Angiogenesis in placental decidua plays a pivotal role in healthy pregnancy. Ferroptosis is a newly identified and iron-dependent cell death mode. However, till now, BaP/BPDE exposure, ferroptosis, defective angiogenesis, and miscarriage have never been correlated; and their regulatory mechanisms have been rarely explored. In this study, we used assays with BPDE-exposed HUVECs (human umbilical vein endothelial cells), decidual tissues and serum samples collected from unexplained recurrent miscarriage and their matched healthy control groups, and placental tissues of BaP-exposed mouse miscarriage model. We found that BaP/BPDE exposure caused ferroptosis and then directly suppressed angiogenesis and eventually induced miscarriage. In mechanism, BaP/BPDE exposure up-regulated free Fe2+ level and promoted lipid peroxidation and also up-regulated MARCHF1 (a novel E3 ligase of GPX4) level to promote the ubiquitination degradation of GPX4, both of which resulted in HUVEC ferroptosis. Furthermore, we also found that GPX4 protein down-regulated the protein levels of VEGFA and ANG-1, two key proteins function for angiogenesis, and thus suppressed HUVEC angiogenesis. In turn, supplement with GPX4 could suppress ferroptosis, recover angiogenesis, and alleviate miscarriage. Moreover, the levels of free Fe2+ and VEGFA in serum might predict the risk of miscarriage. Overall, this study uncovered the crosstalk among BaP/BPDE exposure, ferroptosis, angiogenesis, and miscarriage, discovering novel toxicological effects of BaP/BPDE on human reproductive health. This study also warned the public to avoid exposure to polycyclic aromatic hydrocarbons during pregnancy to effectively prevent adverse pregnancy outcomes.


Assuntos
Aborto Espontâneo , Ferroptose , Camundongos , Animais , Gravidez , Humanos , Feminino , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/metabolismo , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/farmacologia , Benzo(a)pireno , Células Endoteliais/metabolismo , Placenta/metabolismo , Proteínas
9.
Environ Sci Pollut Res Int ; 30(48): 106549-106561, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37730975

RESUMO

Benzo[a]pyrene (B[a]P), one typical environmental pollutant, the toxicity mechanisms, and potential prevention remain perplexing. Available evidence suggests cytochrome P450 1A1 (CYP1A1) and glutathione S-transferases (GSTs) metabolize B[a]P, resulting in metabolic activation and detoxification of B[a]P. This study aimed to reveal the impact of B[a]P exposure on trans-7,8-diol-anti-9,10-epoxide DNA (BPDE-DNA) adduct formation, level of CYP1A1, glutathione S-transferase pi (GSTP1) and glutathione S-transferase mu1 (GSTM1) mRNA, protein and DNA methylation in mice, and the potential prevention of aspirin (ASP). This study firstly determined the BPDE-DNA adduct formation in an acute toxicity test of a large dose in mice induced by B[a]P, which subsequently detected CYP1A1, GSTP1, and GSTM1 at levels of mRNA, protein, and DNA methylation in the organs of mice in a subacute toxicity test at appropriate doses and the potential prevention of ASP, using the methods of real-time quantitative PCR (QPCR), western blotting, and real-time methylation-specific PCR (MSP), respectively. The results verified that B[a]P induced the formation of BPDE-DNA adduct in all the organs of mice in an acute toxicity test, and the order of concentration of which was lung > kidney > liver > brain. In a subacute toxicity test, following B[a]P treatment, mice showed a dose-dependent slowdown in body weight gain and abnormalities in behavioral and cognitive function and which were alleviated by ASP co-treatment. Compared to the controls, following B[a]P treatment, CYP1A1 was significantly induced in all organs in mice at mRNA level (P < 0.05), was suppressed in the lung and cerebrum of mice at protein level, and inhibited at DNA methylation level in the liver, lung, and cerebrum, whereas GSTP1 and GSTM1 at mRNA, protein, and DNA methylation levels showed organ-specific changes in mice following B[a]P treatment, which was generally alleviated by ASP intervention. In conclusion, B[a]P induced BPDE-DNA adduct formation in all organs in mice and altered the mRNA, protein, and DNA methylation levels in CYP1A1, GSTP1, and GSTM1 in an organ-dependent pattern, which could be related to the organ toxicity and mechanism of B[a]P. ASP intervention may be an effective measure to prevent B[a]P toxicity. The findings provide scientific evidence for further study on the organ toxicity and mechanisms of B[a]P.


Assuntos
Citocromo P-450 CYP1A1 , Glutationa S-Transferase pi , Animais , Camundongos , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Glutationa S-Transferase pi/genética , Benzo(a)pireno/toxicidade , Benzo(a)pireno/metabolismo , Adutos de DNA , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/metabolismo , Metilação de DNA , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Aspirina
10.
Environ Sci Pollut Res Int ; 30(43): 97128-97146, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37582894

RESUMO

The long-distance migration of polycyclic aromatic hydrocarbons (PAHs) promotes their release into the marine environment, posing a serious threat to marine life. Studies have shown that PAHs have significant immunotoxicity effects on bivalves, but the exact mechanism of immunotoxicity remains unclear. This paper aims to investigate the effects of exposure to 0.4, 2, and 10 µg/L of benzo(a)pyrene (B[a]P) on the immunity of Chlamys farreri under environmental conditions, as well as the potential molecular mechanism. Multiple biomarkers, including phagocytosis rate, metabolites, neurotoxicity, oxidative stress, DNA damage, and apoptosis, were adopted to assess these effects. After exposure to 0.4, 2, and 10 µg/L B[a]P, obvious concentration-dependent immunotoxicity was observed, indicated by a decrease in the hemocyte index (total hemocyte count, phagocytosis rate, antibacterial and bacteriolytic activity). Analysis of the detoxification metabolic system in C. farreri revealed that B[a]P produced B[a]P-7,8-diol-9,10-epoxide (BPDE) through metabolism, which led to an increase in the expression of protein tyrosine kinase (PTK). In addition, the increased content of neurotransmitters (including acetylcholine, γ -aminobutyric acid, enkephalin, norepinephrine, dopamine, and serotonin) and related receptors implied that B[a]P might affect immunity through neuroendocrine system. The changes in signal pathway factors involved in immune regulation indicated that B[a]P interfered with Ca2+ and cAMP signal transduction via the BPDE-PTK pathway or neuroendocrine pathway, resulting in immunosuppression. Additionally, B[a]P induced the increase in reactive oxygen species (ROS) content and DNA damage, as well as an upregulation of key genes in the mitochondrial pathway and death receptor pathway, leading to the increase of apoptosis rate. Taken together, this study comprehensively investigated the detoxification metabolic system, neuroendocrine system, and cell apoptosis to explore the toxic mechanism of bivalves under B[a]P stress.


Assuntos
Benzo(a)pireno , Pectinidae , Animais , Benzo(a)pireno/toxicidade , Benzo(a)pireno/metabolismo , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/metabolismo , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/farmacologia , Transdução de Sinais , Estresse Oxidativo , Proteínas Tirosina Quinases/metabolismo
11.
Toxicol Appl Pharmacol ; 475: 116656, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37579952

RESUMO

Telomere and mitochondria may be the targets of Benzo[a]pyrene (BaP) -induced male reproductive damage, and further elucidation of the toxic molecular mechanisms is necessary. In this study, we used in vivo and in vitro exposure models to explore the molecular mechanisms of TERT regulation in BaP-induced telomere and mitochondrial damage in spermatocytes. The results showed that the treatment of benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), the active metabolite of BaP, caused telomere dysfunction in mouse spermatocyte-derived GC-2 cells, resulting in S-phase arrest and increased senescence-associated secretory phenotype (SASP). These effects were significantly alleviated by telomerase agonist (ABG) pretreatment in GC-2 cells. SIRT1, FOXO3a, or c-MYC overexpressing GC-2 cell models were established to demonstrate that BPDE inhibited TERT transcriptional expression through the SIRT1/FOXO3a/c-MYC pathway, leading to telomere dysfunction. We also observed that BPDE induced mitochondrial compromise, including complex I damage, accompanied by reduced mitochondrial TERT expression. Based on this, we constructed wild-type TERT-overexpressing (OE-TERTwt) and mitochondria targeting TERT-overexpressing (OE-TERTmst) GC-2 cell models and found that OE-TERTmst GC-2 cells improved mitochondrial function better than OE-TERTwt GC-2 cells. Finally, ICR mice were given BaP by intragastric administration for 35 days, which verified the results of the in vitro study. The results shown that BaP exposure can lead to spermatogenesis disturbance, which is related to the telomere and mitochondrial damage in spermatocytes. In conclusion, our results suggest that BPDE causes telomere and mitochondrial damage in spermatocytes by inhibiting TERT transcription and mitochondrial TERT expression. This study elucidates the molecular mechanism of male reproductive toxicity due to environmental pollutant BaP, and also provides a new perspective for the exploration of interventions and protective measures against male reproductive damage by BaP.


Assuntos
7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido , Benzo(a)pireno , Camundongos , Masculino , Animais , Benzo(a)pireno/toxicidade , Benzo(a)pireno/metabolismo , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/toxicidade , Espermatócitos , Sirtuína 1/metabolismo , Camundongos Endogâmicos ICR , Mitocôndrias
12.
Fish Shellfish Immunol ; 141: 109032, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37640119

RESUMO

Benzo[a]pyrene (B[a]P), a ubiquitous contamination in the marine environments, has the potential to impact the immune response of bivalves by affecting the hemocyte parameters, especially total hemocyte count (THC). THC is mainly determined by haematopoietic mechanisms and apoptosis of hemocytes. Many studies have found that B[a]P can influence the proliferation and differentiation of hemocytes. However, the link between the toxic mechanisms of haematopoietic and environmental pollutants is not explicitly stated. This study is to investigate the toxic effects of B[a]P on haematopoietic mechanisms in C. farreri. Through the tissue expression distribution experiment and EDU assay, gill is identified as a potential haematopoietic tissue in C. farreri. Subsequently, the scallops were exposed to B[a]P (0.05, 0.5, 5 µg/L) for 1d, 3d, 6d, 10d and 15d. Then BPDE content, DNA damage, gene expression of haematopoietic factors and haematopoietic related pathways were determined in gill and hemocytes. The results showed that the expression of CDK2 was significantly decreased under B[a]P exposure through three pathways: RYR/IP3-calcium, BPDE-CHK1 and Notch pathway, resulting in cell cycle arrest. In addition, B[a]P also significantly reduced the number of proliferating hemocytes by affecting the Wnt pathway. Meanwhile, B[a]P can significantly increase the content of ROS, causing a downregulation of FOXO gene expression. The gene expression of Notch pathway and ERK pathway was also detected. The present study suggested that B[a]P disturbed differentiation by multiple pathways. Furthermore, the expression of SOX11 and CD9 were significantly decreased, which directly indicated that differentiation of hemocytes was disturbed. In addition, phagocytosis, phenoloxidase activity and THC were also significant decreased. In summary, the impairment of haematopoietic activity in C. farreri further causes immunotoxicity under B[a]P exposure. This study will improve our understanding of the immunotoxicity mechanism of bivalve under B[a]P exposure.


Assuntos
Benzo(a)pireno , Pectinidae , Animais , Benzo(a)pireno/toxicidade , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/metabolismo , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/farmacologia , Hemócitos/fisiologia
13.
Mutagenesis ; 38(4): 227-237, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37418160

RESUMO

The aim of this study was to investigate if age and body mass of humans have an impact on the DNA-damaging properties of high-frequency mobile phone-specific electromagnetic fields (HF-EMF, 1950 MHz, universal mobile telecommunications system, UMTS signal) and if this form of radiation has an impact on the genotoxic effects of occupationally relevant exposures. Pooled peripheral blood mononuclear cells (PBMC) from three groups [young normal weight, young obese (YO), and older age normal weight individuals] were exposed to different doses of HF-EMF (0.25, 0.5, and 1.0 W/kg specific absorption rate-SAR) and simultaneously or sequentially to different chemicals which cause DNA damage (CrO3, NiCl2, benzo[a]pyrene diol epoxide-BPDE, and 4-nitroquinoline 1-oxide-4NQO) via different molecular mechanisms. We found no difference in regard to the background values in the three groups but a significant increase of DNA damage (81% without and 36% with serum) in cells from old participants after radiation with 1.0 W/kg SAR 16 h. In combined treatment experiments we found no impact of the UMTS signal on chemically induced DNA damage in the different groups in general. However, a moderate decrease of DNA damage was seen in simultaneous treatment experiments with BPDE and 1.0 W/kg SAR in the YO group (decline 18%). Taken together our findings indicate that HF-EMF cause DNA damage in PBMC from older subjects (69.1 years). Furthermore, they show that the radiation does not increase induction of DNA damage by occupationally relevant chemicals.


Assuntos
Telefone Celular , Campos Eletromagnéticos , Humanos , Campos Eletromagnéticos/efeitos adversos , Leucócitos Mononucleares , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido , Dano ao DNA , Demografia
14.
Environ Toxicol ; 38(10): 2429-2439, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37436145

RESUMO

Benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), the metabolite of environmental pollutant benzo(a)pyrene (B(a)P) could induce pulmonary toxicity and inflammation. SIRT1, an NAD+ -dependent histone deacetylase, is known to regulate inflammation in the occurrence and development of various diseases, but its effects on BPDE-induced acute lung injury are still unknown. The present study aimed to explore the role of SIRT1 in BPDE-induced acute lung injury. Here, human bronchial epithelial (HBE) cells (BEAS-2B) cells were stimulated with BPDE at different concentrations (0.50, 0.75, and 1.00 µmol/L) for 24 h, we found that the levels of cytokines in the supernatant were increased and the expression of SIRT1 in cells was down-regulated, at the same time, BPDE stimulation up-regulated the protein expression of HMGB1, TLR4, and p-NF-κBp65 in BEAS-2B cells. Then the activator and inhibitor of SIRT1 were used before BPDE exposure, it was shown that the activation of SIRT1 significantly attenuated the levels of inflammatory cytokines and HMGB1, and reduced the expression of HMGB1, AC-HMGB1, TLR4, and p-NF-κBp65 protein; while these results were reversed by the inhibition of SIRT1. This study revealed that the SIRT1 activation may protect against BPDE-induced inflammatory damage in BEAS-2B cells by regulating the HMGB1/TLR4/NF-κB pathway.


Assuntos
Lesão Pulmonar Aguda , Proteína HMGB1 , Humanos , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/toxicidade , Transdução de Sinais , Benzo(a)pireno/toxicidade , Sirtuína 1/metabolismo , Proteína HMGB1/metabolismo , Citocinas , Inflamação/induzido quimicamente , Lesão Pulmonar Aguda/induzido quimicamente
15.
PLoS One ; 18(5): e0285354, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37146018

RESUMO

Crystalline silica-induced inflammation possibly facilitates carcinogenesis. Here, we investigated its effect on lung epithelium damage. We prepared conditioned media of immortalized human bronchial epithelial cell lines (hereinafter bronchial cell lines) NL20, BEAS-2B, and 16HBE14o- pre-exposed to crystalline silica (autocrine crystalline silica conditioned medium), a phorbol myristate acetate-differentiated THP-1 macrophage line, and VA13 fibroblast line pre-exposed to crystalline silica (paracrine crystalline silica conditioned medium). As cigarette smoking imposes a combined effect on crystalline silica-induced carcinogenesis, a conditioned medium was also prepared using the tobacco carcinogen benzo[a]pyrene diol epoxide. Crystalline silica-exposed and growth-suppressed bronchial cell lines exhibited enhanced anchorage-independent growth in autocrine crystalline silica and benzo[a]pyrene diol epoxide conditioned medium compared with that in unexposed control conditioned medium. Crystalline silica-exposed nonadherent bronchial cell lines in autocrine crystalline silica and benzo[a]pyrene diol epoxide conditioned medium showed increased expression of cyclin A2, cdc2, and c-Myc, and of epigenetic regulators and enhancers, BRD4 and EZH2. Paracrine crystalline silica and benzo[a]pyrene diol epoxide conditioned medium also accelerated the growth of crystalline silica-exposed nonadherent bronchial cell lines. Culture supernatants of nonadherent NL20 and BEAS-2B in crystalline silica and benzo[a]pyrene diol epoxide conditioned medium had higher EGF concentrations, whereas those of nonadherent 16HBE14o- had higher TNF-α levels. Recombinant human EGF and TNF-α promoted anchorage-independent growth in all lines. Treatment with EGF and TNF-α neutralizing antibodies inhibited cell growth in crystalline silica conditioned medium. Recombinant human TNF-α induced BRD4 and EZH2 expression in nonadherent 16HBE14o-. The expression of γH2AX occasionally increased despite PARP1 upregulation in crystalline silica-exposed nonadherent lines with crystalline silica and benzo[a]pyrene diol epoxide conditioned medium. Collectively, crystalline silica- and benzo[a]pyrene diol epoxide-induced inflammatory microenvironments comprising upregulated EGF or TNF-α expression may promote crystalline silica-damaged nonadherent bronchial cell proliferation and oncogenic protein expression despite occasional γH2AX upregulation. Thus, carcinogenesis may be cooperatively aggravated by crystalline silica-induced inflammation and genotoxicity.


Assuntos
Benzo(a)pireno , Proteínas Nucleares , Humanos , Proteínas Nucleares/farmacologia , Meios de Cultivo Condicionados/farmacologia , Fator de Crescimento Epidérmico/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Fatores de Transcrição , Células Epiteliais/metabolismo , Pulmão/metabolismo , Compostos de Epóxi/farmacologia , Carcinogênese , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/metabolismo , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/farmacologia , Microambiente Tumoral , Proteína Potenciadora do Homólogo 2 de Zeste
16.
J Hazard Mater ; 455: 131543, 2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37167865

RESUMO

Environmental Benzo(a)pyrene (BaP) and its ultimate metabolite BPDE (benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide) are typical persistent organic pollutants and endocrine disrupting chemicals. BaP/BPDE exposure might cause human trophoblast cell dysfunctions and induce miscarriage. However, the underlying mechanisms remain largely elusive. In this study, we found that BPDE exposure induced human trophoblast cell pyroptosis by up-regulating NLRP3/Caspase1/GSDMD pathway. We also identified that lnc-HZ14 was highly expressed in BPDE-exposed trophoblast cells and in recurrent miscarriage (RM) vs healthy control (HC) villous tissues. Lnc-HZ14 promoted trophoblast cell pyroptosis by promoting IRF1-mediated ZBP1 transcription, increasing METTL3-mediated m6A methylation on NLRP3 mRNA and its stability, and also enhancing ZBP1/NLRP3 protein interactions. Knockdown of lnc-HZ14/ZBP1/NLRP3 axis could efficiently alleviate BPDE-induced trophoblast cell pyroptosis. Higher level of pyroptosis, as indicated by the up-regulation of lnc-HZ14/ZBP1/NLRP3 axis, was found in RM vs HC villous tissues. In BaP-exposed mouse model, BaP exposure induced placental tissue pyroptosis and miscarriage by up-regulating murine Zbp1/Nlrp3 axis, and knockdown of Nlrp3 could efficiently reduce placenta pyroptosis and alleviate BaP-induced mouse miscarriage. Serum IL-1ß protein level might act as a promising indicator to predict the risk of miscarriage. These findings provided new insights into BaP/BPDE-induced trophoblast cell pyroptosis and miscarriage and might be helpful for further assessment of the toxicological effects of BaP/BPDE on the female reproduction.


Assuntos
7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido , Aborto Espontâneo , Gravidez , Humanos , Feminino , Camundongos , Animais , Trofoblastos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose , Aborto Espontâneo/induzido quimicamente , Aborto Espontâneo/metabolismo , Benzo(a)pireno/metabolismo , Placenta/metabolismo , Metiltransferases/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/farmacologia
17.
Environ Health Perspect ; 131(1): 17009, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36719213

RESUMO

BACKGROUND: Recurrent miscarriage (RM) affects 1%-3% of pregnancies. However, in almost 50% of cases, the cause is unknown. Increasing evidence have shown that benzo(a)pyrene [B(a)P], a representative of polycyclic aromatic hydrocarbons (PAHs), is correlated with miscarriage. However, the underlying mechanisms of B(a)P/benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE)-induced trophoblast cell dysfunctions and miscarriage remain largely unknown. OBJECTIVE: The objective was to discover the role(s) of a novel lncRNA, lnc-HZ09, in the regulation of BPDE-inhibited migration and invasion of trophoblast cells and the occurrence of miscarriage. METHOD: Human trophoblast cells were treated with 0, 0.25, 0.5, 1.0, or 1.5µM BPDE with or without corresponding lnc-HZ09 silencing or overexpression. Using these cells, we evaluated cell migration and invasion, the mRNA and protein levels of members of the PLD1/RAC1/CDC42 pathway, the regulatory roles of lnc-HZ09 in PLD1 transcription and mRNA stability, and lnc-HZ09 transcription and stability. Human villous tissues were collected from RM (n=15) group and their matched healthy control (HC, n=15) group. We evaluated the levels of BPDE-DNA adducts, lnc-HZ09, and the mRNA and protein expression of members of the PLD1/RAC1/CDC42 pathway, and correlated their relative expression levels. We further constructed 0, 0.05 or 0.2mg/kg B(a)P-induced mouse miscarriage model (each n=6), in which the mRNA and protein expression of members of the Pld1/Rac1/Cdc42 pathway were measured. RESULTS: We identified a novel lnc-HZ09. Human trophoblast cells treated with lnc-HZ09 exhibited less cell migration and invasion. In addition, the levels of this lncRNA were higher in villous tissues from women with recurrent miscarriage than those from healthy individuals. SP1-mediated PLD1 mRNA levels were lower, and HuR-mediated PLD1 mRNA stability was less in trophoblast cells overexpressing lnc-HZ09. However, trophoblast cells treated with MSX1 had higher levels of lnc-HZ09, and METTL3-mediated m6A methylation on lnc-HZ09 resulted in greater lnc-HZ09 RNA stability. In BPDE-treated human trophoblast cells and in RM villous tissues, MSX1-mediated lnc-HZ09 transcription and METTL3-mediated lnc-HZ09 stability were both greater. In our mouse miscarriage model, B(a)P-treated mice had lower mRNA and protein levels of members of the Pld1/Rac1/Cdc42 pathway. DISCUSSION: These results suggest that in human trophoblast cells, BPDE exposure up-regulated lnc-HZ09 level, suppressed PLD1/RAC1/CDC42 pathway, and inhibited migration and invasion, providing new insights in understanding the causes and mechanisms of unexplained miscarriage. https://doi.org/10.1289/EHP10477.


Assuntos
Aborto Habitual , RNA Longo não Codificante , Gravidez , Humanos , Feminino , Camundongos , Animais , Trofoblastos , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/metabolismo , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/farmacologia , RNA Longo não Codificante/genética , Benzo(a)pireno/metabolismo , Aborto Habitual/genética , Aborto Habitual/metabolismo , RNA Mensageiro/metabolismo , Metiltransferases/metabolismo
18.
Int Arch Occup Environ Health ; 96(2): 313-329, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36287252

RESUMO

OBJECTIVE: Workers in secondary aluminum production plants are occupationally exposed to polycyclic aromatic hydrocarbons (PAHs). We aimed to monitor the concentrations of PAHs in air and in serum of workers at two secondary aluminum production plants. We also investigated the potential risk of lung cancer development among PAHs exposed workers with emphasis on the role of A1AT mutation and APEX1 gene polymorphisms. METHODS: This study included 177 workers from administrative departments and production lines. Blood samples were obtained for estimation of benzo(a)pyrene diol epoxide albumin adduct (BPDE-Alb adduct), anti-Cyclin-B1 marker (CCNB1) and squamous cell carcinoma antigen (SCCAg). Genes' polymorphism for human apurinic/apyrimidinic endonuclease (APEX1) and alpha-1-anti-trypsin (A1AT) gene mutation were detected. RESULTS: There was a significant increase in the level of BPDE-Alb adduct among exposed workers in comparison to non-exposed group. Moreover, 41.67% of exposed workers in El Tebbin had BPDE-Alb adduct level ≥ 15 ng/ml versus 29.6% of workers in Helwan factory. There was a significant increase in tumor markers (SCCAg and CCNB1) among workers whose BPDE-Alb adduct ≥ 15 ng/ml. There was a significant increase in the level of BPDE-Alb adducts in exposed workers carrying homozygous APEX1 genotype Glu/Glu. Furthermore, exposed workers with the Glu/Glu genotype had high tumor markers levels. There was a significant increase in levels of BPDE-Alb adducts in workers carrying A1AT mutant allele. Moreover, workers with mutant A1AT genotype had significantly high tumor markers (SCCAg and CCNB1) levels. CONCLUSION: Therefore, we conclude that aluminum workers may be at a potential risk of lung cancer development due to PAHs exposure. Although PAHs concentrations in air were within the permissible limits, yet evidence of DNA damage was present as expressed by high BPDE-albumin adduct level in exposed workers. Also, elevation of tumor markers (SCCAg and CCNB1) in exposed workers points to the importance of periodic biological monitoring of such workers to protect them from cancer risk.


Assuntos
Neoplasias Pulmonares , Exposição Ocupacional , Hidrocarbonetos Policíclicos Aromáticos , Humanos , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/análise , Adutos de DNA , Exposição Ocupacional/análise , Alumínio , Albuminas/genética , Reparo do DNA , Biomarcadores Tumorais
19.
Toxicol Sci ; 191(2): 332-342, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36453846

RESUMO

Benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE) leads to dysfunctions of human trophoblast cells and further induces miscarriage. In our previous study, we have found that lnc-HZ03 and miR-hz03 are upregulated in BPDE-exposed human trophoblast cells and in recurrent miscarriage tissues; and the upregulated miR-hz03 caused by lnc-HZ03 further promotes the apoptosis of human trophoblast cells and induces miscarriage. However, how lnc-HZ03 upregulates miR-hz03 is completely unknown. In this study, we find that lnc-HZ03 upregulates the expression level of a transcription factor TFIID (a TATA-binding protein) and promotes TFIID-mediated transactivation response element RNA-binding protein (TRBP) transcription. Subsequently, the upregulated TRBP promotes the maturation of miR-hz03 by splicing its precursor pre-miR-hz03 in human trophoblast cells. In BPDE-exposed trophoblast cells or in recurrent miscarriage tissues, lnc-HZ03 was upregulated, which accelerates the TFIID-mediated TRBP transcription and thus promotes TRBP-mediated miR-HZ03 maturation. Subsequently, the upregulated miR-hz03 further promotes the apoptosis of human trophoblast cells and induces miscarriage. This work provides new insights into the regulation of miRNA expression levels by lncRNAs in BPDE-exposed human trophoblast cells.


Assuntos
Aborto Habitual , MicroRNAs , RNA Longo não Codificante , Gravidez , Feminino , Humanos , Trofoblastos/metabolismo , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido , MicroRNAs/genética , MicroRNAs/metabolismo , Aborto Habitual/metabolismo , Fator de Transcrição TFIID/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
20.
Int J Environ Health Res ; 33(9): 881-893, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35481410

RESUMO

Benzo(a)pyrene (BaP) is an environmental pollutant widely exposed to human beings. While the relationship between BaP and missed abortion is few understood. To explore the association between missed abortion and BaP, genetic polymorphisms of AhR pathway, we recruited 112 cases women with missed abortion and 137 controls women with normal pregnancy from Shanxi, China. The BPDE-DNA adducts level in the case group was higher than that in the control group (P < 0.001). The subjects were categorized according to the tertiles of BPDE-DNA adduct concentrations: T1 (

Assuntos
Aborto Retido , Adutos de DNA , Gravidez , Humanos , Feminino , Benzo(a)pireno/toxicidade , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/metabolismo , Transdução de Sinais , Polimorfismo Genético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...